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We analyze a mathematical model of paced cardiac muscle consisting of a map relating the duration of an
action potential to the preceding diastolic interval as well as the preceding action potential duration, thereby
containing some degree of “memory.” The model displays rate-dependent restitution so that the dynamic and
S1-S2 restitution curves are different, a manifestation of memory in the model. We derive a criterion for the
stability of the 1:1 response pattern displayed by this model. It is found that the stability criterion depends on
the slope of both the dynamic and S1-S2 restitution curves, and that the pattern can be stable even when the
individual slopes are greater or less than one. We discuss the relation between the stability criterion and the
slope of the constant-BCL restitution curve. The criterion can also be used to determine the bifurcation from
the 1:1 response pattern to alternans. We demonstrate that the criterion can be evaluated readily in experiments
using a simple pacing protocol, thus establishing a method for determining whether actual myocardium is
accurately described by such a mapping model. We illustrate our results by considering a specific map recently
derived from a three-current membrane model and find that the stability of the 1:1 pattern is accurately
described by our criterion. In addition, a numerical experiment is performed using the three-current model to
illustrate the application of the pacing protocol and the evaluation of the criterion.
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I. INTRODUCTION whereB is the pacing interval. By inserting E¢R) into Eq.
(1), it is seen that the dynamics is governed by a one-
Several experimental and modeling studies have sugdimensional map given by

gested that an abnormal cardiac rhythm known as action po-
tential duration(APD) alternans is a first stage in the devel- Ani1=FH(B—An). ©)
opment of ventricular arrhythmid4,2], which often lead to
sudden cardiac death. APD alternans can be induced by p
ing cardiac tissue at a rapid rate, and it is characterized by

Guevaraet al. showed that the 1:1 response pattern is stable
hen the slope of the RC is less than one; that is, when

short-long alternations of the durations of subsequent action df df
potentials. The transition from the 1:1 response, in which ‘ﬁ =19D <1, 4
every stimulus elicits an action potential and all APDs are nlA,=A* n

the same, to alternar{2:2 responseis believed to be deter-
mined by the restitution properties of the cardiac membranavhereA* =f(B—A*) is the fixed point of the map.
Specifically, to predict the pacing rates at which the 1:1 re- However, criterion(4) often fails in an experimental set-
sponse is stable, one needs to construct the restitution curf@g. For example, Gilmour and collaboratof§,7] have
(RC) by plotting APD as a function of the preceding diastolic Shown that the 1:1 pattern can be unstable and replaced by
interval (D1). Nolasco and Dahlef8] proposed that the 1:1 APD alternans even when the slope of the RC less than one.
response is stable when the slope of the RC is less than onEese observations suggest that the dynamics of paced car-
based on related ideas that were outlined nearly a centu§iac Eigs)sue cannot be described by the one-dimensional map-
ago[4]. ping (s).

gPEa]cing their work on a firm mathematical foundation, Another experimental observation that points to the short-
Guevaraet al.[5] proposed to model the response of cardiaccoming of the model is that the RC depends on the method

tissue to pacing by an equation of the form by which it is measured. The RC is often measured using the
S1-S2 protocoin which a premature stimulus “S2” is deliv-
A, ,=f(D,), 1) ered at an intervstls2 after pacing the tissue with a suffi-

ciently large number of “S1” stimuli at a pacing interval

wheref is the RC, and the APD on the+1th pace is de- Bs,, SO that the tissue reaches equilibrium and produces ac-

noted byA, ., and the preceding DI bp,. The APD and tion potential with durationAs . The S1-S2 RC is deter-

DI are related through the pacing relation mined by measuring the resulting APD, denotedAys ,
for various coupling intervalsslsz, and visualized by plot-
A,+D,=B, (2)  tingAg s, as afunction 0Ds 5, =Bs s,—As . Experimental
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studies[8—10] have shown that this RC depends on the
choice ofBSl; that is, the model displays rate-dependent res-

titution. In contrast, an analysis of mdg) shows that the
predicted S1-S2 RCs are identical for BY .

Based on a series of experiments using dog hearts,
Gilmour and collaboratorgl1,12 proposed that the 1:1 pat- 300
tern becomes unstable when the slope of the RC determined 260
by thedynamic protocols greater than one. In this protocol,
the pacing interval is held fixed until the tissue reaches equi-

Any

]EF (ms)

400

220\,
150

librium, and then progressively shortened, yielding pairs of 200 200 Dn (ms)
values @*, D*) for eachBg . Experimental studies have 250 s

shown that the S1-S2 and dynamic RCs differ significantly, An (ms) 350 100

and that the slope of the S1-S2 RC can be either shallower 400

[11] or steepef8] than the slope of the dynamic RC. Note
that this is in contrast to the predictions of the one-
dimensional may3), for which the dynamic and S1-S2 RCs

are identical. Unfortunately, it appears that the criterion proyamics derived in Refi15] and to a three-current model of

posed by Gilmour and collaborators does not apply to aliardiac membrangl6], respectively. Finally, Sec. VII dis-
situations: Recent experiments with frdds] and numerical ¢ sses the advantages and limitations of the proposed stabil-
modeling studies of a canine ventricular mod&#] have ity criterion.

shown that a stable 1:1 response can be observed when the
slope of the dynamic RC is greater than one.

These considerations indicate the need for investigating
new models that display rate-dependent restitution, but are
simple enough so that the analysis of the models can lead to The origin of rate-dependent restitution can be illustrated
the development of a new criterion for the stability of the 1:1graphically by takingA, and D, as independent variables
response pattern and the bifurcation to alternans. A simpland plottingF as a two-dimensional surface, as shown in

FIG. 1. An illustration of the functiorF representing cardiac
restitution.

Il. GRAPHICAL ILLUSTRATION OF THE DYNAMIC,
S1-S2, AND CONSTANT-BCL RESTITUTION CURVES

model with this property of the form Fig. 1 for the map derived from the three-current mode-
scribed in Sec. Y. Note that the discussions in this and the
An+1=F(Aq,Dy) (5)  following sections are entirely general unless noted other-

wise, and that we use a specific form Bffor illustrative

burposes only. If the surface is constant as a functioAof

the model shows no rate-dependent restitution and the dy-

namic, S1-S2, and constant-BCL RCs are identical. For typi-

A =F(A,,B—A,). 6) cal models of cardiac muscle, the functiBriends to display
n+i n n the strongest dependence Ap when A, is short, as in the

However, as discussed below, the explicit dependende of €ase for the model used to generate the surface in Fig. 1.
on bothA,, andD,, endows the model with memory so that it _ o
displays rate-dependent restitution and the S1-S2 and dy- A. Dynamic restitution curve

namic R_Cs differ{?]._We note that a mapping of_ this form In the context of the mappin), the dynamic RC can be

was derived analytically{15] from a three-ionic-current given the following mathematical interpretation. Consider

membrane modél16]. _ _ _ __ the case when the tissue paced at a con®aotproduce a
The primary purpose of this paper is to derive a criterions:1 yesponse and for a long enough time so that the dynamics

for the stability of the 1:1 response pattern and the transitioRettie down to the steady-state vald& (the fixed point.
to alternans for the mafb) in terms of readily measured ynder this conditio17]

guantitiesi.e., the sIopéSSlS2 of the S1-S2 RC and the slope

Sayn Of the dynamic RC. In addition, we discuss the relation Ani1=A =A%, (7)
between the stability criterion and the slog:, of an RC
introduced by Otani and Gilmoui7] (the so called constant-
BCL RC) describing the transient response of the tissue as it D*=B— A*. (®)
relaxes to its equilibrium value. The paper is organized in the

following way. In Sec. II, we illustrate graphically the differ- |nserting Egs.(7) and (8) into (6), the fixed point can be
ence between dynamic, S1-S2, and constant-BCL RCs faynd from the solution to

map(6). Section Il presents the derivation of a new stability

criterion from the map, and Sec. IV describes a protocol for A* =F(A* B—A*)=F(A*,D*). (9)
evaluating the criterion from experimental measurements.

Sections V and VI demonstrate the accuracy of the new criThe set of fixed point&\* and the associated diastolic inter-
terion by applying it to the mapping model of cardiac dy-vals D*, recorded for differenBs, is the dynamic RC.

was proposed on an empirical basis by Otani and Gilmou
[7]. Using pacing relatiori2), it is seen that this model is still
represented by a one-dimensional mapping given by

and the corresponding DI is
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a) A, (ms)

FIG. 2. Graphical illustration
of the (a) dynamic,(b) S1-S2,(c)
constant-BCL RCs, andd) their
intersection at a fixed point of the
map forB=450 ms. The dynamic
RC is the intersection of surfaces
An+1=F(A,,Dy)  and  Apyg
=A,. The S1-S2 RC is the inter-
section of surfaces A,,;
=F(A,.D,) and An=A’§1
=const. The constant-BCL RC is
the intersection of the functioR
with surfaceB= const.

Graphically, this curve is shown in Fig(& as the intersec- A,=A¥% =const, (10)

tion of the surfaces described by E§) and left part of Eq. .

(7): An;1=A,. Therefore, we see that the dynamic protocol ) o

samples only a very limited region of the two-dimensionalwhereAg is the steady-state APD at the pacing intei®g)|.

surfaceF because of the constraint imposed by E2). We  The APDAg s, €an be determined as

can see from the graph that the valueAdt is almost con- '

stant for long Dls, since this specific choice of the restitution . N .

function F is nearly constant at this region. As;s,=F(As,,Ds;s,)=F(As .Bgs,~As).  (11)
In experiments, the dynamic RC is plotted in two dimen-

sions as pairs of points\(*, D*), as shown in Fig. 3solid  Thys, according to Eq11), the S1-S2 RC is the intersection

lines). This plot is a projection of the three-dimensional RC surface(5) with the vertical plane defined by E€LO) (for

shown in Fig. 2a) onto theA,,,—D, plane. For a given set given value oBg ). Figure Zb) shows example of S1-S2
of model parameters, there exists only a single, unique dy- i 1 N :
namic RC. RC for the given value oASl. Note that a single surface

o defined by Eq(10) may correspond to two or more values of
B. S1-S2 restitution curve B, for a more complicated functioR than that shown in

Following the above description of the S1-S2 protocol,Fig. 2.
the S1-S2 RC can be obtained by noting that all APDs pre- Comparing Figs. @) and Zb) for large values of the DI,

ceding the S2 stimulus are equal, so that we see that the S1-S2 RCs are nearly parallel to the dynamic
3001 5 2401 ) Bs,=250 ms
=450 N .
a) Bs, ms 250 FIG. 3. A projection of Fig.
2(d) on theA,, ;—D,, plane indi-
290 200 cating the intersection of the dy-

f namic RC(solid ling), S1-S2 RC
eI (dot-dashed ling and constant-
BCL RC (dashed ling for differ-
ent S1-S1 pacing rates ¢f) Bs,
=450 ms and(b) Bs,=250 ms.
Stars represent intersection points.

An+1 (ms)
2

dynamic RC

l 1400 /= - 81-S2RC n poir
0y 717/ . constant-BCL RC Note_that the S1-S2 RC is _|nd|s-
120 tinguishable from the dynamic RC
140 160 180 200 220 240 0 10 20 30 40 50 60 70 80 90 in (a).
D, (ms) D, (ms)
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RC and all of them have essentially the same APD values, [ll. STABILITY CRITERION FOR THE 1:1 PATTERN
because this specific form of the functiénis nearly flat in AND THE BIFURCATION TO ALTERNANS

this region. The problem of determining the stability of the 1:1 re-

o sponse to periodic pacing is equivalent to determining the
C. Constant-BCL restitution curve stability of the fixed pointA* of the one-dimensional map
A third RC introduced by Otani and Gilmour, but not (6). As described in Re{17], the stability of the fixed point
discussed as often in the literature, describes the transiei#t determined from
response of paced cardiac tissue for constant BCL, as it ap-

proaches the equilibrium value following a change in BCL.  dF _(9F dA,  JF dDy —F
In this situation,A, and D, are related through Eq2), so dA|, _ \dALdA, oD, dA /[, .
that the transient dynamics are given by the intersectidn of " " (13)

and the vertical plane defined by E@), as shown in Fig.
2(c) for the case oB=450 ms. We call this as a constant- Realizing thatdA,/dA,=1 anddD,/dA,= —1 [using pac-
BCL RC (following Ref. [7]), because it contains all values jng relation(2)], Eq. (13) can be written as

of A, andD,, both transients and steady state recorded for a

constant BCL. JE

!

~OA,

JF
D,

(14)

An:A* An:A*

D. Intersection of the dynamic, S1-S2, and constant-BCL

restitution curves
The fixed point is stable ifF’|<1 and unstable ifiF’]|

The pOint where the dynamiC RC, a constant-BCL RC,>1 Whean’|>1, the existence of a 2:2 respor(wern_
and a S1-S2 RC intersect play an important role in determingng becomes possible. The derivative given in Egf) and
ing the stability of the 1:1 response pattern at that pointthe stability criterion are not new; Otani and Gilmoli]
Graphically, for a given point on the dynamic R@ne point  previously presented the same result. However, it is not ob-
along the intersection oF and the plane defined bf,  vious how to measur&’ or the partial derivatives in Eq.
=An1 as shown in Fig. @], there exists a single vertical (14) experimentally. The primary purpose of this paper is to
plane defined b, =Ag, that also passes through this point. show how these derivatives can be obtained and the criterion
At this simultaneous intersection point evaluated from a minor modification of a standard experi-
mental protocol.
A*=As =Ass,, D*=Ds=Dsgs, There are two ways of evaluating’ experimentally.
First, note that' describes the response of the tissue when
and it is perturbed away from its equilibrium valus* for con-
stant model parameters, including the pacing Eatélence,
B=Bs,=Bss,. (120 in mathematical terms—F’ is the slopeSgc oOf the
constant-BCL RC evaluated at the fixed poifithe minus
For the given value oB=Bs =Bs s , there is also a single sign comes from the fact that the slope of RC is the deriva-

constant-BCL curve passing through this intersection pointtive of the functionF with respect toD, whereas formula

The intersection of all three RCs is presented graphically if14) is evaluated with respect @, .] .
Fig. 2d) for B=450 ms. A second way of determining’ is to express the partial

A projection of the curves shown in Fig(d) onto the derivatives in terms of the slopes of dynamic and S1-S2 RCs.

A,.1—D, plane showing the intersection of three RCs isNote that the slope of the dynamic RC is given by
presented in Fig. 3 for two different values of pacing interval
B. As can be seen from the figure, the local S1-S2, constant-
BCL, and dynamic RCs are nearly identical for the relatively
large BCL B=450 ms) and differ substantiallyvith differ-

ent slopes at the intersection poifar smaller value of BCL  \yhere the last expression results from differentiating .
(B=200 ms). (The fact thatSyy,>Ss s, is specific to our  for the dynamic RC. Realizing thasD*/éD*=1 and
choice ofF; in principle, other functions could result in the gF/gA* :aF/aAn|An=A*, since both represent the partial
slopes being the same &;,<Sss,.) The immediate re- gerivative ofF with respect to its first argument evaluated at

sponse of the tissue to an abrupt chang®is determined the fixed point, we find that
by the original S1-S2 RC, but in the long term, the APD

IA*  IF JA* JF oD*
= +
dD*  9A* gD* 9D* oD*

Sayn= , (15

settles down to a new point on the dynamic RC. Hence, all F1ID | A - ax
transient response after an abrupt changB wccurs along Sayn= . ) (16)
the constant-BCL RC. As will be shown in the following 1—9F13A|a = ax

section, the stability of the 1:1 response pattern must incor-

porate information about the detailed shape of the surfface Next, note that the slope of the S1-S2 RC that intersects the
at the intersection point, and neither the slope of the dynamidynamic RC at the fixed point for a givéh(see Sec. Il Ais

nor the S1-S2 curve alone does so. given by[differentiating Eq.(12) for the S1-S2 RC
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As;s, few tens of milliseconds should suffice for typical cardiac
1 .
= tissue.
S, S
2 dDsgs, Bg =Bg s =B (3) Return the pacing interval 8, and measure all APDs
i until the tissue returns to its equilibrium valu* . These
oF aA’S‘l oF Dsgs, transient value#\{"*"* are used to determinBzc, [see step

+
oA Ds;s, Ds;s, Dsys,

le= 85152: B

7

(M
(4) Adjust the pacing interval to a new vallg,,, for a
single pace, and measure the ensuing ARBnoted by

Ashort)-

(5) Repeat stef3).
(6) Use Ajgng and Agnort to evaluateSs s, at the fixed

point A¥ based on the central difference formula for estimat-
ing a derivative:

Using the facts thaWA’S‘l/ﬁDslst and dDss,/dDs s,
=1, we find that

S = JF
S aDSlSZ

JF

- D,
lez 83182: B

(18

An:A*

AIong_Ashort (20)

Sslsz _Bshort.
where the later equality results from the observation that

both derivatives represent the partial derivativeFofnvith ~ Here we used the fact th8inq— Bshort= Diong— Dshort for
respect to its second argument evaluated at the fixed pointthe S1-S2 RC.

Using Eqs.(14), (16), and(18), the stability criterion for (7) Apply a linear least-squares fitting methpiB] to fit
the stability of the fixed poinA* of map (6), and hence of all transient pointsA{"®"* in order to determinégc; at the
the stability of the 1:1 response pattern, is given by fixed pointA* .

(8) Repeat stepsl)—(7) for several values of BCL in
equal intervalsB;, ;=B;—AB, whereAB should be of the
order of tens of milliseconds.

_ _ _ _ o (9) DetermineSyy, at the fixed pointA;" using central
Equation(19) is the primary result of this paper, giving a difference approximatiofil9,20]
prescription for relating readily measured quantities to the

<1. (19

1
/= ISsetl=|1- 1+§yn)sslsz

stability of the 1:1 response pattern. It involves either the AF _A*
slope of the constant-BCL RC or the slope of both the dy- Sayn~ % (21
namic and S1-S2 RCs calculated at their intersection point. D" 1—Diyq

Thus, the existence of alternaiwhen |F’'|=1) is deter-
mined by the combination dg;,, and Ss;s, and not by ei-

ther of the slopes individually.

This protocol requires little additional work in compari-
son to measuring the dynamic RC. We note that steps 2—7
can be repeated to reduce the random errors occurring in
IV. NEW PACING PROTOCOL experimental measurements.

Since there exists an infinite number of constant-BCL and . ExAMPLE: APPLYING THE STABILITY CRITERION
S1-S2 RCs, it might appear that the experimental or compu- TO A MAP
tational effort in determining the slopes in criteridt9) _ _ B o
would make our proposal impractical. However, the slope of In this section we apply stability criteriaf19) to the map
the constant-BCL or the S1-S2 RCs is only needed at théerived in Ref[15] from the three-current model of cardiac
intersection point with the dynamic RC for a given value of membrane developed by Fenton and Kaifh@l. Since the
B, and hence the knowledge of the full surfaEeis not three-current model used here employs different notation
needed to determine the stability of the fixed point. To reducéhan the original one, the Appendix provides a short sum-
the experimental or computational effort, we suggesicali- ~ mary of the model and lists the parameter values. Under an
fied dynamic protocothat allows one to measurgy,,, ~ @pproximation that the parameter of the three-current
Ss 5, andSg¢, at the each fixed point with minimal effort; model is large, the restitution functidhhas an explicit form

1-2

(1) Choose a value oB=B; (initially, B should be rela-

tively long), wait until the APD achieves steady state, and FR Boy=1{c.— Mcur
measure its valud;" . This value will be used to construct (An,Dn)=1 Cy P(A,,D,)
the dynamic RC and comput&, , [see sted9)].
(2) Adjust the pacing interval to a new vall,,q for a C, Feur 2
single pace, and measure the ensuing AREBnoted by +\/1-—=—= == )
P(Ay.Dn)  [P(An.Dy)

Aiong)- Biong must be sufficiently large so that the difference
betweerA,,, andA;" is above measurement error, but small
enough so that it falls within an approximate linear neighbor-
hood of the fixed point. Values @&,,,,— B of the order of a  where

(22
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TABLE I. Typical parameter values for the three-current ionic 350+ :
model. 1 b1
3004 S
Parameter Value Value @ 250_' _______________
(three-current modgl (ms) Parameter  (dim’less g 1 den>1 ..-i- ________ den<1
2004 - ,
Tsclose 1000 Verit 0.13 < 1
Tslow 127 Vsig 0.85 150‘_ E
Tung 130 K 40 1004 = E
Tsopen 80 Vout 0.1 T ;, T 1
Tfopen 18 2.0 E
Tfclose 10 ] E
Tfast 0.25 1.5
7
)
o
~ ~ ~ *’A 75 ° 10-
P(A,,D,)=1-[1-G(A,)e "nle Pn'gate, (23 @ l
0.5
=\ FeurAn= (1= Verio)l mix 1
G(A)= - . (29 0.0 o , ,
1_eXF[_An+rmix(vsig_vcrit)/rcur] 100 200 300 400 500
~ ~ N . . B (ms)
A, andD,, are dimensionless variables given by
FIG. 4. (a) The bifurcation diagram antb) slopesSyy, 53132
~ A, ~ D, and|F’| (which is equal tcSg¢, by definition plotted as functions
An= Tsclose Dy= Tsclose (25 of BCL. Parameter values from Table | are used. The dashed verti-

cal line indicates the BCL, wher$;,,=1.
and the constant§, andC, are

aP o~ o~
— =exp(—ri. . D* —A*)| — -G* |,
Il mix (9An e F( gate’ ) (9An <
C1:1+_(Vsig_vcrit)v C2:2[rcur+rmix(vsig_ 1)]. n- n-
lcur (30
(26)
o ) . aP ~ ~
The remaining constants are ratios of the time constants of —— =T gate€XP) — I gateD*)[1—G* exp(—A*)],
the three-current model as D A,=A*
(31)
] _ Tsclose P Tslow P Tslow @27 _
gate 7'sopen1 eur Tung , m Tsclose. E _ Meur™ G* eXF{_A* + rmix(Vsig_Vcrit)/rcur]
. (?An A=A 1_exq_A*+rmix(vsig_vcrit)/rcur]
Values of these time constants, as welMag, andV;;, are " 32)
given in Table I.
Since the map22)—(24) has an explicit form, we can and
determine the derivatives at the fixed poiit using expres- o ~
sions P*=P(A*,D*), G*=G(A*). (33
JF JF P Using EQgs.(28)—(32) and combining them according to
(9TAn S PT=) 5TAn ~ M*' Egs.(16) and(18), we find Sy, andSSlsz, and from Eq(14)
n~ n— we determingF’| at the fixed point of the map. Figure
A=A A=A d F he fixed f th F 4
shows theA* and the derivatives as a function®f obtained
i zf £ (28) using the “standard” parameter values given in Table I, for
D, A s P 9D, ' which the model does not exhibit alternans. As can be seen

An=A* from the graph, a stable 1:1 response occursBerbelow
where ~300 ms, where5;,,>1 (indicated by the dashed vertical
line). Figure 4b) demonstrates th&s s, and|F’| are below

one for the entire range @&’s.

IF 1 C,—2r2,/P* _ _ _
— =——|Teurt = — Figure 5 shows the results obtained with parameter val-
IPIZ _ix  (P*) 2V1=Co/P* +(r ¢y /P¥) ues, for which the model exhibits alternansdye, is ad-

(29) justed from 80 ms to 50 msFigure %a) shows that altern-
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350+ ans occur only in the region between the two solid vertical
3004 lines wherelF’|>1, as can be seen in Fig(d. To the left
250 of the dashed line, whergy,,>1, both a 1:1 response or
B 200 alternans are seen. Thus, alternans indeed occurs in the range
E 50l of Bs for which|F'|>1, while neitherS;y, nor Sg s, deter-
< 100] mines whether alternans exist or not. Note that &} and
50 Ss;s, are greater than one for 150 mB=200 ms, where
0] |[F’|<1 and the 1:1 response is stable.
2.0
| VI. EXAMPLE: APPLYING THE STABILITY CRITERION
1.54 TO AN IONIC MODEL
on
2 104 To illustrate how to apply the modified dynamic protocol
% o described in Sec. IV to determine the response of the 1:1
054 response pattern, we perform a numerical experiment using
o the three-current model described in the Appendix. The or-
0.0 dinary differential equations of the mod€Al1), (A4), and
100 200 300 400 500 (A8), are integrated using Gear's backward differentiation

B (ms)

FIG. 5. (@) The bifurcation diagram anth) derivativesSy,,,
Ss;s,» and|F’| (which is equal toSgc, by definition plotted as

method with a variable step size no larger than 0.1 ms. The
APD was computed as a time interval during which the volt-
agev>V; . To assure that the steady state is reached, at
least 1000 stimuli are applied.

functions of BCL. Parameter values from Table | were used, except Figure 6 presents results obtained by applying this proce-
Tsoper=50 Ms. The dashed vertical line indicates the BCL, wheredure. The left panel of Fig. 6 presents the dynamic and local

Sayn=1.

S1-S2 RCs. The dynamic RC is obtained using step 1 of the
modified dynamic protocol discussed in Sec. IV and consists
of pairs of points A*,D*). Points A, B, C, D indicate fixed
points of the responsg.e., the steady-state valye®r four

a) b)
262-
260 ! ATy —dynamic RC
e—S1-S2 RC's A :\ 260] - @ - S1-82 RG
dynamic RC : : s55] * constantBCLRC
p 1
240 ' @ 2561
:254-
252
2204 2504
‘o 248
E
246 T T T T T T T 1
< 2004 58 60 62 64 66 68 70 72 74
D (ms)
180+ c)
205+
160 2001
0
w1954
E
< 490
point Sgqy, Ssis, IFl SeeL
A 0.923 0.86 0.792 0.795 185
B 1.22 098 0.783 0.789
C 1439 1.03 0.746 0.750 180 T T T T T 1
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FIG. 6. Results of numerical simulation of the three-current ionic model illustrating the modified dynamic protocol. Parameter values
from Table | were used, excepfpe=50 ms.(a) The dynamic and local S1-S2 RCs, and values of their derivatSgs ( Ss;s,, |[F’|, and
Sgc1) at several points. The estimated maximum error in determiffiig[according to Eq(19)] is 0.5% and in determinin§gc, (using
the linear least-squares fitting methads 1%. The dashed vertical line indicat8g,,=1. From the table, it is seen thiE'| and Sge <1
everywhere. The right panels show intersection of the constant BCL, dynamic, and S1-S2 RCs for gbjrasd\D (c) in an expanded

scale.
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FIG. 7. Bifurcation diagram obtained from numerical simulations of the three-current ionic modelryi{+116 ms and other
parameters as in Table I. Arrows indicate fixed points, where values of the deriva{ixgsSs s, [F'|, andSgc, are determined, as given
in the table. The estimated maximum error in determinidy [according to Eq(19)] is 0.5% and in determinin§gc, (using the linear
least-squares fitting methpd 1%.

values of B, where steps 2 and 4 of the protocol were appliechuch larger andSs s, is a bit smaller than one, such that

in order to obtain pairsAjong:Diong) @Nd Ashort:Dshord-  |F’| is smaller than one.

The table lists values of all slopeS,, Ss;s,, and|F'[) Thus, the results of numerical simulations of the three-
calculated in these points using formula$), (20), and(21).  current model confirm that Nolasco and Dahlen’s criterion
One can see thdF'| is less than one in the entire region, fails to predict the gxistence of aIternans in this model. A_
indicating a stable 1:1 response, even when the slGpgs stable 1:1 response is observed even if t_he slopes of dynamic
andSg s, become greater than one. The dashed vertical lin®" S1-S2 RCs are much greater than unity. These results also

correspond to the DI, whei®,, = 1. The right panel of Fig show that the absolute value of the derivatie, either

’ yn . . . .
6 indicates the intersection of the constant B@btained €valuated directly aSgc, , or computed by combininGyy,
using step 3 of the protodoldynamic, and S1-S2 RCs for andSg s, through Eq.(19), more accurately predicts the ex-
points A and D in an expanded scale. We can see that fdptence of alternans.
relatively slow pacing ratgoint A) all these RCs are almost
identical, whereas for faster pacing rapmint D) they differ VIl. DISCUSSION
from each other and have different slopes. The s|&g, | . N o
of the constant-BCL RC at the intersection points calculated This study presents a new stability criteri¢h9) for a
using linear least-squares fitting method is essentially equédine-dimensional mapping model of cardiac dynamics ex-
to |F’|; a small difference is caused by a presence of the fadiressed in terms of easily obtainable experimental quantities.
ionic current in the ODESthis current was eliminated in When tested on an example of a map derived from the three-

order to derive a magthat becomes important at fast pacing CU'rént membrane model, criteri¢h9) is very accuratésee
rates. Figs. 5 and § while previously used criteria, which are

Figure 7 shows the bifurcation diagram for a set of pa-b"’w’e_d on the s_,l_ope of the_ dynamic or S1-S2 RCs, fai_l_to
rameters that result in alternans,,,, changed to 116 ms predict the stability of the 1:1 response pattern and transition

As seen in the graph, the transition from the 1:1 to the 2:4° alternans.

" . The limitation of the stability criterior{19) is that it ap-
response occurs Bt=440 ms. AsB decreases, the ransition ;o< o1y when cardiac dynamics is adequately described by
back to the 1:1 response takes plac8at310 ms. The fig-

) ; a map of form(6). This model limits the extent of cardiac
ure also lists the slopeSyyn, Ss;s,, |F'[, andSgc., evalu- memory to only one previous beat. If long-term memory
ated at the transition points between 1:1 response and altegffects are present, as indicated by some experimental stud-
nans and at other points away from the bifurcations. At veryies [21] and described by some mod¢ls4], criterion (19)

long B (point A) all slopes are much less than one. Bt will fail in most cases. Thus, the pacing protocol described in
=440 ms(point B), where alternans first appears Bgle-  Sec. IV and the stability criterion given by E.9) can also
creases, all slopes are very close to oneBAt310 ms(point  be used to determine how well cardiac dynamics is described
C), where alternans returns to the 1:1 response, the slopes bj map(5).

the dynamic and S1-S2 RCs exceed one, Wifile andSg, The advantage of the proposed stability criterion is that it
are very close to one. At even smaller(Boint D) Sy, is  can be easily used in actual experiments. The appropriate
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procedure, described in Sec. IV, requires only a small modi- (v—=Ve¢ri)(1—v) if V>V,
fication of the existing dynamic protocol: the addition of two Q(v)= 0 it eV
extra stimuli. However, one should keep in mind that this U= Verit.
procedure will yield usable results only if the true steadyang the gating variableevolves according to the equation
state is reached at each pacing rate. This may require apply-

ing more stimuli at each pacing rate than it has been done in

most studies, and may prolong the time it takes to collect the dt =[fu(v)—f]/7(v). (A4)
data. For example, one study in human hef@fissuggests

that the APD decays exponentially to the steady-state valugoltage-dependent functiorfs, and 7; are approximated by
with a time constant as long at 20 s so that pacing for as longtep functions

at 1 min at eaclB may be needed to reach equilibrium. We )

also note that generalizations of the pacing protocol can be fo(v)=0 and 7¢(v)="Ticiose If V>Vigate
devised that use multipoint approximations to the derivative,
determined by using multiple values &;po,; and Bygpg-
Nevertheless, this criterion provides a new tool for experi-
mental the investigation of the dynamics of cardiac responsgimilarly, the slow inward current has the form

during rapid pacing.
Jsiow= — S v)/ Tsow: (AB)

where the sigmoid functio®(v) is given by

(A3)

fo(v)=1 and 7i(v)="Tropen If vV<Vigate-
(A5)
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with s,, and 7 given by

APPENDIX: THE THREE-CURRENT IONIC MODEL .
S.(v)=0 and 74(v)="Tsciose If U>ngate

The three-current ionic modgll6] contains three vari- )
ables: the transmembrane potentialscaled so that =0 S+(v)=1 and 74(v)=7s0pen f V<Vsgate:
andv =1 are the rest and peak voltages, respectjyelpnd (A9)
two gating variable$ ands (mnemonicsf is for fast,sis for ~ 1he outward, ungated current has the form
slow). The voltage changes in response to the ionic currents

according to the equation Jung=P(v)/ Tyng, (A10)
dv and its piecewise-linear voltage dependence is given by
dat =~ (Jrastt Jslow+~]ung+~]stim): (A1) .
1 if v>Vou
L P(v)= . (A11)
and the currentS g, Jsiow, andJyng are simplified repre- viVour 1f v<Vgu.
sentations of sodium, calcium, and potassium currents, re-

The stimulus currendg;;,, is an external current applied
by the experimenter. Typicallyg;;(t) consists of a periodic
train of brief pulseqthe duration of 1 ms was used in our
Jias= — FQ(V) Tast, (A2) simulations, where the stimulus strength is set approxi-
mately to twice the amplitude required to excite fully recov-
where 74,4 IS the time constant of this current, the voltage-ered tissue. Table | lists the values of the parameters we used

spectively.
The fast inward currenls,; has the form

dependent functio®(v) is given by in our calculations unless otherwise stated.
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