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Condition for alternans and stability of the 1:1 response pattern in a ‘‘memory’’ model
of paced cardiac dynamics
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We analyze a mathematical model of paced cardiac muscle consisting of a map relating the duration of an
action potential to the preceding diastolic interval as well as the preceding action potential duration, thereby
containing some degree of ‘‘memory.’’ The model displays rate-dependent restitution so that the dynamic and
S1-S2 restitution curves are different, a manifestation of memory in the model. We derive a criterion for the
stability of the 1:1 response pattern displayed by this model. It is found that the stability criterion depends on
the slope of both the dynamic and S1-S2 restitution curves, and that the pattern can be stable even when the
individual slopes are greater or less than one. We discuss the relation between the stability criterion and the
slope of the constant-BCL restitution curve. The criterion can also be used to determine the bifurcation from
the 1:1 response pattern to alternans. We demonstrate that the criterion can be evaluated readily in experiments
using a simple pacing protocol, thus establishing a method for determining whether actual myocardium is
accurately described by such a mapping model. We illustrate our results by considering a specific map recently
derived from a three-current membrane model and find that the stability of the 1:1 pattern is accurately
described by our criterion. In addition, a numerical experiment is performed using the three-current model to
illustrate the application of the pacing protocol and the evaluation of the criterion.

DOI: 10.1103/PhysRevE.67.031904 PACS number~s!: 87.19.Hh, 05.45.2a, 87.10.1e
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I. INTRODUCTION

Several experimental and modeling studies have s
gested that an abnormal cardiac rhythm known as action
tential duration~APD! alternans is a first stage in the deve
opment of ventricular arrhythmias@1,2#, which often lead to
sudden cardiac death. APD alternans can be induced by
ing cardiac tissue at a rapid rate, and it is characterized
short-long alternations of the durations of subsequent ac
potentials. The transition from the 1:1 response, in wh
every stimulus elicits an action potential and all APDs a
the same, to alternans~2:2 response! is believed to be deter
mined by the restitution properties of the cardiac membra
Specifically, to predict the pacing rates at which the 1:1
sponse is stable, one needs to construct the restitution c
~RC! by plotting APD as a function of the preceding diasto
interval ~DI!. Nolasco and Dahlen@3# proposed that the 1:1
response is stable when the slope of the RC is less than
based on related ideas that were outlined nearly a cen
ago @4#.

Placing their work on a firm mathematical foundatio
Guevaraet al. @5# proposed to model the response of card
tissue to pacing by an equation of the form

An115 f ~Dn!, ~1!

where f is the RC, and the APD on then11th pace is de-
noted byAn11 and the preceding DI byDn . The APD and
DI are related through the pacing relation

An1Dn5B, ~2!
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whereB is the pacing interval. By inserting Eq.~2! into Eq.
~1!, it is seen that the dynamics is governed by a o
dimensional map given by

An115 f ~B2An!. ~3!

Guevaraet al. showed that the 1:1 response pattern is sta
when the slope of the RC is less than one; that is, when

U d f

dAn
U

An5A*
5U d f

dDn
U<1, ~4!

whereA* 5 f (B2A* ) is the fixed point of the map.
However, criterion~4! often fails in an experimental set

ting. For example, Gilmour and collaborators@6,7# have
shown that the 1:1 pattern can be unstable and replace
APD alternans even when the slope of the RC less than
These observations suggest that the dynamics of paced
diac tissue cannot be described by the one-dimensional m
ping ~3!.

Another experimental observation that points to the sh
coming of the model is that the RC depends on the met
by which it is measured. The RC is often measured using
S1-S2 protocolin which a premature stimulus ‘‘S2’’ is deliv-
ered at an intervalBS1S2

after pacing the tissue with a suffi
ciently large number of ‘‘S1’’ stimuli at a pacing interva
BS1

, so that the tissue reaches equilibrium and produces

tion potential with durationAS1
. The S1-S2 RC is deter

mined by measuring the resulting APD, denoted byAS1S2
,

for various coupling intervalsBS1S2
, and visualized by plot-

ting AS1S2
as a function ofDS1S2

5BS1S2
2AS1

. Experimental
©2003 The American Physical Society04-1
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studies @8–10# have shown that this RC depends on t
choice ofBS1

; that is, the model displays rate-dependent r
titution. In contrast, an analysis of map~3! shows that the
predicted S1-S2 RCs are identical for allBS1

.
Based on a series of experiments using dog hea

Gilmour and collaborators@11,12# proposed that the 1:1 pa
tern becomes unstable when the slope of the RC determ
by thedynamic protocolis greater than one. In this protoco
the pacing interval is held fixed until the tissue reaches e
librium, and then progressively shortened, yielding pairs
values (A* , D* ) for eachBS1

. Experimental studies hav
shown that the S1-S2 and dynamic RCs differ significan
and that the slope of the S1-S2 RC can be either shallo
@11# or steeper@8# than the slope of the dynamic RC. No
that this is in contrast to the predictions of the on
dimensional map~3!, for which the dynamic and S1-S2 RC
are identical. Unfortunately, it appears that the criterion p
posed by Gilmour and collaborators does not apply to
situations: Recent experiments with frogs@13# and numerical
modeling studies of a canine ventricular model@14# have
shown that a stable 1:1 response can be observed whe
slope of the dynamic RC is greater than one.

These considerations indicate the need for investiga
new models that display rate-dependent restitution, but
simple enough so that the analysis of the models can lea
the development of a new criterion for the stability of the 1
response pattern and the bifurcation to alternans. A sim
model with this property of the form

An115F~An ,Dn! ~5!

was proposed on an empirical basis by Otani and Gilm
@7#. Using pacing relation~2!, it is seen that this model is stil
represented by a one-dimensional mapping given by

An115F~An ,B2An!. ~6!

However, as discussed below, the explicit dependenceF
on bothAn andDn endows the model with memory so that
displays rate-dependent restitution and the S1-S2 and
namic RCs differ@7#. We note that a mapping of this form
was derived analytically@15# from a three-ionic-curren
membrane model@16#.

The primary purpose of this paper is to derive a criter
for the stability of the 1:1 response pattern and the transi
to alternans for the map~6! in terms of readily measured
quantities, i.e., the slopeSS1S2

of the S1-S2 RC and the slop

Sdyn of the dynamic RC. In addition, we discuss the relati
between the stability criterion and the slopeSBCL of an RC
introduced by Otani and Gilmour@7# ~the so called constant
BCL RC! describing the transient response of the tissue a
relaxes to its equilibrium value. The paper is organized in
following way. In Sec. II, we illustrate graphically the diffe
ence between dynamic, S1-S2, and constant-BCL RCs
map~6!. Section III presents the derivation of a new stabil
criterion from the map, and Sec. IV describes a protocol
evaluating the criterion from experimental measureme
Sections V and VI demonstrate the accuracy of the new
terion by applying it to the mapping model of cardiac d
03190
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namics derived in Ref.@15# and to a three-current model o
cardiac membrane@16#, respectively. Finally, Sec. VII dis-
cusses the advantages and limitations of the proposed st
ity criterion.

II. GRAPHICAL ILLUSTRATION OF THE DYNAMIC,
S1-S2, AND CONSTANT-BCL RESTITUTION CURVES

The origin of rate-dependent restitution can be illustra
graphically by takingAn and Dn as independent variable
and plottingF as a two-dimensional surface, as shown
Fig. 1 for the map derived from the three-current model~de-
scribed in Sec. V!. Note that the discussions in this and th
following sections are entirely general unless noted oth
wise, and that we use a specific form ofF for illustrative
purposes only. If the surface is constant as a function ofAn ,
the model shows no rate-dependent restitution and the
namic, S1-S2, and constant-BCL RCs are identical. For ty
cal models of cardiac muscle, the functionF tends to display
the strongest dependence onAn whenAn is short, as in the
case for the model used to generate the surface in Fig. 1

A. Dynamic restitution curve

In the context of the mapping~6!, the dynamic RC can be
given the following mathematical interpretation. Consid
the case when the tissue paced at a constantB to produce a
1:1 response and for a long enough time so that the dynam
settle down to the steady-state valueA* ~the fixed point!.
Under this condition@17#

An115An[A* , ~7!

and the corresponding DI is

D* 5B2A* . ~8!

Inserting Eqs.~7! and ~8! into ~6!, the fixed point can be
found from the solution to

A* 5F~A* ,B2A* !5F~A* ,D* !. ~9!

The set of fixed pointsA* and the associated diastolic inte
vals D* , recorded for differentBs, is the dynamic RC.

FIG. 1. An illustration of the functionF representing cardiac
restitution.
4-2
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FIG. 2. Graphical illustration
of the ~a! dynamic,~b! S1-S2,~c!
constant-BCL RCs, and~d! their
intersection at a fixed point of the
map forB5450 ms. The dynamic
RC is the intersection of surface
An115F(An ,Dn) and An11

5An . The S1-S2 RC is the inter
section of surfaces An11

5F(An ,Dn) and An5AS1
*

5const. The constant-BCL RC is
the intersection of the functionF
with surfaceB5const.
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Graphically, this curve is shown in Fig. 2~a! as the intersec-
tion of the surfaces described by Eq.~5! and left part of Eq.
~7!: An115An . Therefore, we see that the dynamic protoc
samples only a very limited region of the two-dimension
surfaceF because of the constraint imposed by Eq.~9!. We
can see from the graph that the value ofA* is almost con-
stant for long DIs, since this specific choice of the restitut
function F is nearly constant at this region.

In experiments, the dynamic RC is plotted in two dime
sions as pairs of points (A* , D* ), as shown in Fig. 3~solid
lines!. This plot is a projection of the three-dimensional R
shown in Fig. 2~a! onto theAn112Dn plane. For a given se
of model parameters, there exists only a single, unique
namic RC.

B. S1-S2 restitution curve

Following the above description of the S1-S2 protoc
the S1-S2 RC can be obtained by noting that all APDs p
ceding the S2 stimulus are equal, so that
03190
l
l
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-

An[AS1
* 5const, ~10!

whereAS1
* is the steady-state APD at the pacing intervalBS1

.

The APDAS1S2
can be determined as

AS1S2
5F~AS1

* ,DS1S2
!5F~AS1

* ,BS1S2
2AS1

* !. ~11!

Thus, according to Eq.~11!, the S1-S2 RC is the intersectio
of surface~5! with the vertical plane defined by Eq.~10! ~for
a given value ofBS1

). Figure 2~b! shows example of S1-S2

RC for the given value ofAS1
* . Note that a single surface

defined by Eq.~10! may correspond to two or more values
BS1

for a more complicated functionF than that shown in
Fig. 2.

Comparing Figs. 2~a! and 2~b! for large values of the DI,
we see that the S1-S2 RCs are nearly parallel to the dyna
-

s.
-

FIG. 3. A projection of Fig.
2~d! on theAn112Dn plane indi-
cating the intersection of the dy
namic RC~solid line!, S1-S2 RC
~dot-dashed line!, and constant-
BCL RC ~dashed line! for differ-
ent S1-S1 pacing rates of~a! BS1

5450 ms and~b! BS1
5250 ms.

Stars represent intersection point
Note that the S1-S2 RC is indis
tinguishable from the dynamic RC
in ~a!.
4-3
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RC and all of them have essentially the same APD valu
because this specific form of the functionF is nearly flat in
this region.

C. Constant-BCL restitution curve

A third RC introduced by Otani and Gilmour, but no
discussed as often in the literature, describes the trans
response of paced cardiac tissue for constant BCL, as it
proaches the equilibrium value following a change in BC
In this situation,An and Dn are related through Eq.~2!, so
that the transient dynamics are given by the intersection oF
and the vertical plane defined by Eq.~2!, as shown in Fig.
2~c! for the case ofB5450 ms. We call this as a constan
BCL RC ~following Ref. @7#!, because it contains all value
of An andDn , both transients and steady state recorded fo
constant BCL.

D. Intersection of the dynamic, S1-S2, and constant-BCL
restitution curves

The point where the dynamic RC, a constant-BCL R
and a S1-S2 RC intersect play an important role in determ
ing the stability of the 1:1 response pattern at that po
Graphically, for a given point on the dynamic RC@one point
along the intersection ofF and the plane defined byAn
5An11 as shown in Fig. 2~a!#, there exists a single vertica
plane defined byAn5AS1

* that also passes through this poin

At this simultaneous intersection point

A* 5AS1
5AS1S2

, D* 5DS1
5DS1S2

,

and

B5BS1
5BS1S2

. ~12!

For the given value ofB5BS1
5BS1S2

, there is also a single
constant-BCL curve passing through this intersection po
The intersection of all three RCs is presented graphically
Fig. 2~d! for B5450 ms.

A projection of the curves shown in Fig. 2~d! onto the
An112Dn plane showing the intersection of three RCs
presented in Fig. 3 for two different values of pacing interv
B. As can be seen from the figure, the local S1-S2, const
BCL, and dynamic RCs are nearly identical for the relative
large BCL (B5450 ms) and differ substantially~with differ-
ent slopes at the intersection point! for smaller value of BCL
(B5200 ms). ~The fact thatSdyn.SS1S2

is specific to our
choice ofF; in principle, other functions could result in th
slopes being the same orSdyn,SS1S2

.) The immediate re-
sponse of the tissue to an abrupt change inB is determined
by the original S1-S2 RC, but in the long term, the AP
settles down to a new point on the dynamic RC. Hence,
transient response after an abrupt change inB occurs along
the constant-BCL RC. As will be shown in the followin
section, the stability of the 1:1 response pattern must in
porate information about the detailed shape of the surfacF
at the intersection point, and neither the slope of the dyna
nor the S1-S2 curve alone does so.
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III. STABILITY CRITERION FOR THE 1:1 PATTERN
AND THE BIFURCATION TO ALTERNANS

The problem of determining the stability of the 1:1 r
sponse to periodic pacing is equivalent to determining
stability of the fixed pointA* of the one-dimensional map
~6!. As described in Ref.@17#, the stability of the fixed point
is determined from

dF

dAn
U

An5A*
5S ]F

]An

dAn

dAn
1

]F

]Dn

dDn

dAn
D U

An5A*
[F8.

~13!

Realizing thatdAn /dAn51 anddDn /dAn521 @using pac-
ing relation~2!#, Eq. ~13! can be written as

F85
]F

]An
U

An5A*
2

]F

]Dn
U

An5A*
. ~14!

The fixed point is stable ifuF8u,1 and unstable ifuF8u
.1. WhenuF8u>1, the existence of a 2:2 response~altern-
ans! becomes possible. The derivative given in Eq.~14! and
the stability criterion are not new; Otani and Gilmour@7#
previously presented the same result. However, it is not
vious how to measureF8 or the partial derivatives in Eq
~14! experimentally. The primary purpose of this paper is
show how these derivatives can be obtained and the crite
evaluated from a minor modification of a standard expe
mental protocol.

There are two ways of evaluatingF8 experimentally.
First, note thatF8 describes the response of the tissue wh
it is perturbed away from its equilibrium valueA* for con-
stant model parameters, including the pacing rateB. Hence,
in mathematical terms,2F8 is the slope SBCL of the
constant-BCL RC evaluated at the fixed point.@The minus
sign comes from the fact that the slope of RC is the deri
tive of the functionF with respect toDn whereas formula
~14! is evaluated with respect toAn .]

A second way of determiningF8 is to express the partia
derivatives in terms of the slopes of dynamic and S1-S2 R
Note that the slope of the dynamic RC is given by

Sdyn[
]A*

]D*
5

]F

]A*

]A*

]D*
1

]F

]D*

]D*

]D*
, ~15!

where the last expression results from differentiating Eq.~9!
for the dynamic RC. Realizing that]D* /]D* 51 and
]F/]A* 5]F/]AnuAn5A* , since both represent the parti
derivative ofF with respect to its first argument evaluated
the fixed point, we find that

Sdyn5
]F/]DnuAn5A*

12]F/]AnuAn5A*
. ~16!

Next, note that the slope of the S1-S2 RC that intersects
dynamic RC at the fixed point for a givenB ~see Sec. II A! is
given by @differentiating Eq.~11! for the S1-S2 RC#
4-4
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SS1S2
[

]AS1S2

]DS1S2

U
BS1

5BS1S2
5B

5S ]F

]AS1
*

]AS1
*

]DS1S2

1
]F

]DS1S2

]DS1S2

]DS1S2

DU
BS1

5BS1S2
5B

.

~17!

Using the facts that]AS1
* /]DS1S2

50 and ]DS1S2
/]DS1S2

51, we find that

SS1S2
5

]F

]DS1S2
U

BS1
5BS1S2

5B

5
]F

]Dn
U

An5A*
, ~18!

where the later equality results from the observation t
both derivatives represent the partial derivative ofF with
respect to its second argument evaluated at the fixed po

Using Eqs.~14!, ~16!, and~18!, the stability criterion for
the stability of the fixed pointA* of map ~6!, and hence of
the stability of the 1:1 response pattern, is given by

uF8u5uSBCLu5U12S 11
1

Sdyn
DSS1S2

U,1. ~19!

Equation~19! is the primary result of this paper, giving
prescription for relating readily measured quantities to
stability of the 1:1 response pattern. It involves either
slope of the constant-BCL RC or the slope of both the
namic and S1-S2 RCs calculated at their intersection po
Thus, the existence of alternans~when uF8u>1) is deter-
mined by the combination ofSdyn andSS1S2

and not by ei-
ther of the slopes individually.

IV. NEW PACING PROTOCOL

Since there exists an infinite number of constant-BCL a
S1-S2 RCs, it might appear that the experimental or com
tational effort in determining the slopes in criterion~19!
would make our proposal impractical. However, the slope
the constant-BCL or the S1-S2 RCs is only needed at
intersection point with the dynamic RC for a given value
B, and hence the knowledge of the full surfaceF is not
needed to determine the stability of the fixed point. To red
the experimental or computational effort, we suggest amodi-
fied dynamic protocolthat allows one to measureSdyn ,
SS1S2

, andSBCL at the each fixed point with minimal effort

~1! Choose a value ofB5Bi ~initially, B should be rela-
tively long!, wait until the APD achieves steady state, a
measure its valueAi* . This value will be used to construc
the dynamic RC and computeSdyn @see step~9!#.

~2! Adjust the pacing interval to a new valueBlong for a
single pace, and measure the ensuing APD~denoted by
Along). Blong must be sufficiently large so that the differen
betweenAlong andAi* is above measurement error, but sm
enough so that it falls within an approximate linear neighb
hood of the fixed point. Values ofBlong2B of the order of a
03190
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few tens of milliseconds should suffice for typical cardi
tissue.

~3! Return the pacing interval toB, and measure all APDs
until the tissue returns to its equilibrium valueAi* . These
transient valuesAi

trans are used to determineSBCL @see step
~7!#.

~4! Adjust the pacing interval to a new valueBshort for a
single pace, and measure the ensuing APD~denoted by
Ashort).

~5! Repeat step~3!.
~6! Use Along and Ashort to evaluateSS1S2

at the fixed

point Ai* based on the central difference formula for estim
ing a derivative:

SS1S2
'

Along2Ashort

Blong2Bshort
. ~20!

Here we used the fact thatBlong2Bshort5Dlong2Dshort for
the S1-S2 RC.

~7! Apply a linear least-squares fitting method@18# to fit
all transient pointsAi

trans in order to determineSBCL at the
fixed pointAi* .

~8! Repeat steps~1!–~7! for several values of BCL in
equal intervalsBi 115Bi2DB, whereDB should be of the
order of tens of milliseconds.

~9! DetermineSdyn at the fixed pointAi* using central
difference approximation@19,20#

Sdyn'
Ai 21* 2Ai 11*

Di 21* 2Di 11*
. ~21!

This protocol requires little additional work in compar
son to measuring the dynamic RC. We note that steps
can be repeated to reduce the random errors occurrin
experimental measurements.

V. EXAMPLE: APPLYING THE STABILITY CRITERION
TO A MAP

In this section we apply stability criterion~19! to the map
derived in Ref.@15# from the three-current model of cardia
membrane developed by Fenton and Karma@16#. Since the
three-current model used here employs different nota
than the original one, the Appendix provides a short su
mary of the model and lists the parameter values. Unde
approximation that the parameterk of the three-current
model is large, the restitution functionF has an explicit form

F~Ãn ,D̃n!5H C12
r cur

P~Ãn ,D̃n!

1A12
C2

P~Ãn ,D̃n!
1F r cur

P~Ãn ,D̃n!
G 2J ,

~22!

where
4-5
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P~Ãn ,D̃n!512@12G~Ãn!e2Ãn#e2D̃nr gate, ~23!

G~Ãn!5
r curÃn2~12Vcrit !r mix

12exp@2Ãn1r mix~Vsig2Vcrit !/r cur#
, ~24!

Ãn and D̃n are dimensionless variables given by

Ãn5
An

tsclose
, D̃n5

Dn

tsclose
, ~25!

and the constantsC1 andC2 are

C1511
r mix

r cur
~Vsig2Vcrit !, C252@r cur1r mix~Vsig21!#.

~26!

The remaining constants are ratios of the time constant
the three-current model as

r gate5
tsclose

tsopen
, r cur5

tslow

tung
, r mix5

tslow

tsclose
. ~27!

Values of these time constants, as well asVsig andVcrit , are
given in Table I.

Since the map~22!–~24! has an explicit form, we can
determine the derivatives at the fixed pointÃ* using expres-
sions

]F

]Ãn
U

Ãn5Ã*

5
]F

]P

]P

]Ãn
U

Ãn5Ã*

,

]F

]D̃n
U

Ãn5Ã*

5
]F

]P

]P

]D̃n
U

Ãn5Ã*

, ~28!

where

]F

]P U
Ãn5Ã*

5
1

~P* !2 F r cur1
C222r cur

2 /P*

2A12C2 /P* 1~r cur /P* !2G ,

~29!

TABLE I. Typical parameter values for the three-current ion
model.

Parameter Value Value
~three-current model! ~ms! Parameter ~dim’less!

tsclose 1000 Vcrit 0.13
tslow 127 Vsig 0.85
tung 130 k 40

tsopen 80 Vout 0.1
t f open 18
t f close 10
t f ast 0.25
03190
of

]P

]Ãn
U

Ãn5Ã*

5exp~2r gate* D̃* 2Ã* !S ]G

]Ãn
U

Ãn5Ã*

2G* D ,

~30!

]P

]D̃n
U

Ãn5Ã*

5r gateexp~2r gateD̃* !@12G* exp~2Ã* !#,

~31!

]G

]Ãn
U

Ãn5Ã*

5
r cur2G* exp@2Ã* 1r mix~Vsig2Vcrit !/r cur#

12exp@2Ã* 1r mix~Vsig2Vcrit !/r cur#
,

~32!

and

P* [P~Ã* ,D̃* !, G* [G~Ã* !. ~33!

Using Eqs.~28!–~32! and combining them according t
Eqs.~16! and~18!, we findSdyn andSS1S2

, and from Eq.~14!

we determineuF8u at the fixed point of the map. Figure
shows theA* and the derivatives as a function ofB, obtained
using the ‘‘standard’’ parameter values given in Table I, f
which the model does not exhibit alternans. As can be s
from the graph, a stable 1:1 response occurs forBs below
;300 ms, whereSdyn.1 ~indicated by the dashed vertica
line!. Figure 4~b! demonstrates thatSS1S2

anduF8u are below

one for the entire range ofB’s.
Figure 5 shows the results obtained with parameter v

ues, for which the model exhibits alternans (tsopen is ad-
justed from 80 ms to 50 ms!. Figure 5~a! shows that altern-

FIG. 4. ~a! The bifurcation diagram and~b! slopesSdyn , SS1S2
,

anduF8u ~which is equal toSBCL by definition! plotted as functions
of BCL. Parameter values from Table I are used. The dashed v
cal line indicates the BCL, whereSdyn51.
4-6
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FIG. 5. ~a! The bifurcation diagram and~b! derivativesSdyn ,
SS1S2

, and uF8u ~which is equal toSBCL by definition! plotted as
functions of BCL. Parameter values from Table I were used, exc
tsopen550 ms. The dashed vertical line indicates the BCL, wh
Sdyn51.
ists

03190
ans occur only in the region between the two solid verti
lines whereuF8u.1, as can be seen in Fig. 5~b!. To the left
of the dashed line, whereSdyn.1, both a 1:1 response o
alternans are seen. Thus, alternans indeed occurs in the r
of Bs for whichuF8u.1, while neitherSdyn nor SS1S2

deter-

mines whether alternans exist or not. Note that bothSdyn and
SS1S2

are greater than one for 150 ms&B&200 ms, where

uF8u,1 and the 1:1 response is stable.

VI. EXAMPLE: APPLYING THE STABILITY CRITERION
TO AN IONIC MODEL

To illustrate how to apply the modified dynamic protoc
described in Sec. IV to determine the response of the
response pattern, we perform a numerical experiment u
the three-current model described in the Appendix. The
dinary differential equations of the model,~A1!, ~A4!, and
~A8!, are integrated using Gear’s backward differentiati
method with a variable step size no larger than 0.1 ms.
APD was computed as a time interval during which the vo
agev.Vcrit . To assure that the steady state is reached
least 1000 stimuli are applied.

Figure 6 presents results obtained by applying this pro
dure. The left panel of Fig. 6 presents the dynamic and lo
S1-S2 RCs. The dynamic RC is obtained using step 1 of
modified dynamic protocol discussed in Sec. IV and cons
of pairs of points (A* ,D* ). Points A, B, C, D indicate fixed
points of the response~i.e., the steady-state values! for four

pt
e

r values
FIG. 6. Results of numerical simulation of the three-current ionic model illustrating the modified dynamic protocol. Paramete
from Table I were used, excepttsopen550 ms.~a! The dynamic and local S1-S2 RCs, and values of their derivatives (Sdyn , SS1S2

, uF8u, and
SBCL) at several points. The estimated maximum error in determininguF8u @according to Eq.~19!# is 0.5% and in determiningSBCL ~using
the linear least-squares fitting method! is 1%. The dashed vertical line indicatesSdyn51. From the table, it is seen thatuF8u andSBCL,1
everywhere. The right panels show intersection of the constant BCL, dynamic, and S1-S2 RCs for points A~b! and D ~c! in an expanded
scale.
4-7
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FIG. 7. Bifurcation diagram obtained from numerical simulations of the three-current ionic model withtslow5116 ms and other

parameters as in Table I. Arrows indicate fixed points, where values of the derivativesSdyn , SS1S2
, uF8u, andSBCL are determined, as given

in the table. The estimated maximum error in determininguF8u @according to Eq.~19!# is 0.5% and in determiningSBCL ~using the linear
least-squares fitting method! is 1%.
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values of B, where steps 2 and 4 of the protocol were app
in order to obtain pairs (Along ,Dlong) and (Ashort ,Dshort).
The table lists values of all slopes (Sdyn , SS1S2

, and uF8u)
calculated in these points using formulas~19!, ~20!, and~21!.
One can see thatuF8u is less than one in the entire regio
indicating a stable 1:1 response, even when the slopesSdyn

andSS1S2
become greater than one. The dashed vertical

correspond to the DI, whereSdyn51. The right panel of Fig.
6 indicates the intersection of the constant BCL~obtained
using step 3 of the protocol!, dynamic, and S1-S2 RCs fo
points A and D in an expanded scale. We can see that
relatively slow pacing rate~point A! all these RCs are almos
identical, whereas for faster pacing rate~point D! they differ
from each other and have different slopes. The slopeuSBCLu
of the constant-BCL RC at the intersection points calcula
using linear least-squares fitting method is essentially eq
to uF8u; a small difference is caused by a presence of the
ionic current in the ODEs~this current was eliminated in
order to derive a map! that becomes important at fast pacin
rates.

Figure 7 shows the bifurcation diagram for a set of p
rameters that result in alternans (tslow changed to 116 ms!.
As seen in the graph, the transition from the 1:1 to the
response occurs atB.440 ms. AsB decreases, the transitio
back to the 1:1 response takes place atB.310 ms. The fig-
ure also lists the slopesSdyn , SS1S2

, uF8u, andSBCL , evalu-

ated at the transition points between 1:1 response and a
nans and at other points away from the bifurcations. At v
long B ~point A! all slopes are much less than one. AtB
.440 ms~point B!, where alternans first appears asB de-
creases, all slopes are very close to one. AtB.310 ms~point
C!, where alternans returns to the 1:1 response, the slop
the dynamic and S1-S2 RCs exceed one, whileuF8u andSBCL
are very close to one. At even smaller B~point D! Sdyn is
03190
d

e

or

d
al
st

-

2

er-
y

of

much larger andSS1S2
is a bit smaller than one, such tha

uF8u is smaller than one.
Thus, the results of numerical simulations of the thre

current model confirm that Nolasco and Dahlen’s criteri
fails to predict the existence of alternans in this model.
stable 1:1 response is observed even if the slopes of dyna
or S1-S2 RCs are much greater than unity. These results
show that the absolute value of the derivativeF8, either
evaluated directly asSBCL , or computed by combiningSdyn
andSS1S2

through Eq.~19!, more accurately predicts the ex
istence of alternans.

VII. DISCUSSION

This study presents a new stability criterion~19! for a
one-dimensional mapping model of cardiac dynamics
pressed in terms of easily obtainable experimental quanti
When tested on an example of a map derived from the th
current membrane model, criterion~19! is very accurate~see
Figs. 5 and 6!, while previously used criteria, which ar
based on the slope of the dynamic or S1-S2 RCs, fai
predict the stability of the 1:1 response pattern and transi
to alternans.

The limitation of the stability criterion~19! is that it ap-
plies only when cardiac dynamics is adequately described
a map of form~6!. This model limits the extent of cardia
memory to only one previous beat. If long-term memo
effects are present, as indicated by some experimental s
ies @21# and described by some models@14#, criterion ~19!
will fail in most cases. Thus, the pacing protocol described
Sec. IV and the stability criterion given by Eq.~19! can also
be used to determine how well cardiac dynamics is descri
by map~5!.

The advantage of the proposed stability criterion is tha
can be easily used in actual experiments. The appropr
4-8
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procedure, described in Sec. IV, requires only a small mo
fication of the existing dynamic protocol: the addition of tw
extra stimuli. However, one should keep in mind that t
procedure will yield usable results only if the true stea
state is reached at each pacing rate. This may require ap
ing more stimuli at each pacing rate than it has been don
most studies, and may prolong the time it takes to collect
data. For example, one study in human hearts@9# suggests
that the APD decays exponentially to the steady-state v
with a time constant as long at 20 s so that pacing for as l
at 1 min at eachB may be needed to reach equilibrium. W
also note that generalizations of the pacing protocol can
devised that use multipoint approximations to the derivati
determined by using multiple values ofBshort and Blong .
Nevertheless, this criterion provides a new tool for expe
mental the investigation of the dynamics of cardiac respo
during rapid pacing.
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APPENDIX: THE THREE-CURRENT IONIC MODEL

The three-current ionic model@16# contains three vari-
ables: the transmembrane potentialv ~scaled so thatv50
and v51 are the rest and peak voltages, respectively!, and
two gating variablesf ands ~mnemonics:f is for fast,s is for
slow!. The voltage changes in response to the ionic curre
according to the equation

dv
dt

52~Jf ast1Jslow1Jung1Jstim!, ~A1!

and the currentsJf ast , Jslow , andJung are simplified repre-
sentations of sodium, calcium, and potassium currents,
spectively.

The fast inward currentJf ast has the form

Jf ast52 f Q~v !/t f ast , ~A2!

wheret f ast is the time constant of this current, the voltag
dependent functionQ(v) is given by
es

03190
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Q~v !5H ~v2Vcrit !~12v ! if v.Vcrit

0 if v,Vcrit ,
~A3!

and the gating variablef evolves according to the equation

d f

dt
5@ f `~v !2 f #/t f~v !. ~A4!

Voltage-dependent functionsf ` andt f are approximated by
step functions

f `~v !50 and t f~v !5t f close if v.Vf gate

f `~v !51 and t f~v !5t f open if v,Vf gate.
~A5!

Similarly, the slow inward current has the form

Jslow52sS~v !/tslow , ~A6!

where the sigmoid functionS(v) is given by

S~v !5$11tanh@k~v2Vsig!#%/2, ~A7!

and the gating variables is governed by the equations

ds

dt
5@s`~v !2s#/ts~v !, ~A8!

with s` andts given by

s`~v !50 and ts~v !5tsclose if v.Vsgate

s`~v !51 and ts~v !5tsopen if v,Vsgate.
~A9!

The outward, ungated current has the form

Jung5P~v !/tung , ~A10!

and its piecewise-linear voltage dependence is given by

P~v !5H 1 if v.Vout

v/Vout if v,Vout .
~A11!

The stimulus currentJstim is an external current applie
by the experimenter. Typically,Jstim(t) consists of a periodic
train of brief pulses~the duration of 1 ms was used in ou
simulations!, where the stimulus strength is set appro
mately to twice the amplitude required to excite fully reco
ered tissue. Table I lists the values of the parameters we u
in our calculations unless otherwise stated.
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by Eq.~21! cannot be used to calculate derivatives at the fix
pointsAi* at the bifurcation to alternans because the values
the fixed points inside the region of alternans are unknow
Instead, it is possible to estimate the derivative using a form
that takes into account the known fixed points lying to t
other side of the fixed pointAi* . The slope of the dynamic RC
is then given by

Sdyn'6
0.5Ai62* 22Ai61* 11.5Ai*

DD
,

where ‘‘1 ’’ ‘‘( 2)’’ is used to determine derivative at the fixe
point Ai* lying after ~before! the bifurcation to alternans. Her
we assumed that the changes in the DI between two adja
fixed points are equal, so thatDD5uDi* 2Di 61* u5uDi 61*
2Di 62* u. This formula can be found, for example, in K.E
Atkinson, An Introduction to Numerical Analysis, 2nd ed.
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